Subscribe to Syndicate

Kerstin Lenhof

Machine learning methods trained on cancer cell line panels are intensively studied for the prediction of optimal anti-cancer therapies. While classification approaches distinguish effective from ineffective drugs, regression approaches aim to quantify the degree of drug effectiveness. However, the high specificity of most anti-cancer drugs induces a skewed distribution of drug response values in favor of the more drug-resistant cell lines, negatively affecting the classification performance (class imbalance) and regression performance (regression imbalance) for the sensitive cell lines.
Experimental high-throughput techniques, like next-generation sequencing or microarrays, are nowadays routinely applied to create detailed molecular profiles of cells. In general, these platforms generate high-dimensional and noisy data sets. For their analysis, powerful bioinformatics tools are required to gain novel insights into the biological processes under investigation. Here, we present an overview of the GeneTrail tool suite that offers rich functionality for the analysis and visualization of (epi-)genomic, transcriptomic, miRNomic, and proteomic profiles.
Motivation A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panels. Results We present a novel integer linear programming formulation, called MEthod for Rule Identification with multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells.

Pages