Subscribe to Syndicate

Anna Katharina Dehof

Molecular geometric properties, such as volume, exposed surface area, and occurrence of internal cavities, are important inputs to many applications in molecular modeling. In this work we describe a very general and highly efficient approach for the accurate computation of such properties, which is applicable to arbitrary molecular surface models. The technique relies on a high performance ray casting framework that can be easily adapted to the computation of further quantities of interest at interactive speed, even for huge models.
Molecular visualization is one of the cornerstones in structural bioinformatics and related fields. Today, rasterization is typically used for the interactive display of molecular scenes, while ray tracing aims at generating high-quality images, taking typically minutes to hours to generate and requiring the usage of an external off-line program. Recently, real-time ray tracing evolved to combine the interactivity of rasterization-based approaches with the superb image quality of ray tracing techniques.
RNPS1, Acinus, and SAP18 form the apoptosis- and splicing-associated protein (ASAP) complex, which is also part of the exon junction complex. Whereas RNPS1 was originally identified as a general activator of mRNA processing, all three proteins have been found within functional spliceosomes. Both RNPS1 and Acinus contain typical motifs of splicing regulatory proteins including arginine/serine-rich domains. Due to the absence of such structural features, however, a function of SAP18 in splicing regulation is completely unknown.

Pages