Subscribe to Syndicate

Lara Schneider

Motivation A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panels. Results We present a novel integer linear programming formulation, called MEthod for Rule Identification with multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells.
We present GeneTrail 3, a major extension of our web service GeneTrail that offers rich functionality for the identification, analysis, and visualization of deregulated biological processes. Our web service provides a comprehensive collection of biological processes and signaling pathways for 12 model organisms that can be analyzed with a powerful framework for enrichment and network analysis of transcriptomic, miRNomic, proteomic, and genomic data sets. Moreover, GeneTrail offers novel workflows for the analysis of epigenetic marks, time series experiments, and single cell data.
Objective Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically.

Pages