Subscribe to Syndicate

Lara Schneider

SUMOylation is a post-translational modification of proteins that regulates these proteins’ localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation.
Experimental high-throughput techniques, like next-generation sequencing or microarrays, are nowadays routinely applied to create detailed molecular profiles of cells. In general, these platforms generate high-dimensional and noisy data sets. For their analysis, powerful bioinformatics tools are required to gain novel insights into the biological processes under investigation. Here, we present an overview of the GeneTrail tool suite that offers rich functionality for the analysis and visualization of (epi-)genomic, transcriptomic, miRNomic, and proteomic profiles.
Motivation A major goal of personalized medicine in oncology is the optimization of treatment strategies given measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity, machine learning techniques are commonly applied to cancer cell line panels. Results We present a novel integer linear programming formulation, called MEthod for Rule Identification with multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells.